锑烯表面铀、钍、钚的吸附性能研究: 线性响应方法结合密度泛函理论

吴飞宏¹ 汤 贤¹ 成国栋² 闫 隆³ 张 洋¹
 1(南华大学 核科学技术学院 衡阳 421001)
 2(南华大学 计算机学院 衡阳 421001)
 3(中国科学院上海应用物理研究所 上海 201800)

摘要 基于密度泛函理论(Density Functional Theory, DFT)研究了锕系元素铀(U)、钍(Th)、钚(Pu)在二维金属 材料锑烯表面的吸附特性。采用线性响应法拟合得到描述铀、钚5f轨道电子强格点库仑作用的哈伯德U值分 别为2.24 eV和2.84 eV。利用DFT+U计算发现,锑烯难以吸附钚原子(吸附能为负值),而对铀、钍原子具有较 强的表面化学吸附以及丰富的稳定吸附位点。铀和钍原子能量上最稳定的吸附位点分别为桥位——孔位之间 和孔位,吸附能分别为4.40 eV和3.62 eV。通过电子结构、电荷转移和最高占据态轨道波函数分析发现,铀、钍 原子使锑烯的带隙中出现杂质态,并与锑烯之间通过强p-d轨道耦合使其稳定吸附。进一步计算了吸附率随温 度的变化,得出铀和钍在锑烯表面的解吸温度分别达到837 K和660 K。结果预示锑烯是一种良好的铀、钍吸附 材料,在海水提铀等领域具有潜在应用。

关键词 锑烯,锕系元素,密度泛函理论,线性响应,吸附,电子结构 中图分类号 TL12 DOI: 10.11889/j.0253-3219.2023.hjs.46.070301

Study on the adsorption properties of antimonene for U, Th, and Pu: Combination of the linear response approach method and density functional theory

WU Feihong¹ TANG Xian¹ CHENG Guodong² YAN Long³ ZHANG Yang¹

1(School of Nuclear Science and Technology, University of South China, Hengyang 421001, China)
 2(School of Computer Science, University of South China, Hengyang 421001, China)
 3(Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China)

Abstract [Background] The extraction of uranium (U) and its alternative resources, such as thorium (Th) and plutonium (Pu), from seawater is essential to address the scarcity of terrestrial U resources. The development of a separation material with high adsorption properties is the key to solving this problem. [Purpose] This study aims to reveal the adsorption behavior of actinides (U, Th, and Pu) on the surface of a two-dimensional metal material, antimonene. [Methods] The Hubbard U values, U_{eff} were determined for the on-site Coulomb interactions of 5f

国家自然科学基金(No.12275125, No.12175302)、湖南省自然科学基金(No.2021JJ20038)、湖南省科技创新计划资助项目(No.2021RC3105) 资助

第一作者:吴飞宏,男,1997年出生,2023年于南华大学获硕士学位,研究领域为二维材料的核素吸附行为研究

通信作者: 汤贤, E-mail: xiantang@usc.edu.cn; 成国栋, E-mail: chenggd@usc.edu.cn

收稿日期: 2022-12-16, 修回日期: 2023-03-15

Supported by National Natural Science Foundation of China (No.12275125, No.12175302), the Natural Science Foundation of Hunan Province (No. 2021JJ20038), and the Science and Technology Innovation Program of Hunan Province (No.2021RC3105)

First author: WU Feihong, male, born in 1997, graduated from University of South China with a master's degree in 2023, focusing on the study of nuclide adsorption behavior of two-dimensional materials

Corresponding author: TANG Xian, E-mail: xiantang@usc.edu.cn; CHENG Guodong, E-mail: chenggd@usc.edu.cn Received date: 2022-12-16, revised date: 2023-03-15

electrons of U and Pu atoms using the linear response method. Furthermore, the adsorption energy, adsorption configuration, electronic structures, charge transfer, and highest occupied molecular orbital wavefunction of a U, Th, or Pu atom adsorbed on the surface of monolayer antimonene were analyzed using the DFT+U approximation. The variation of the adsorption rate with temperature was further calculated by the equilibrium adsorption rate equation. **[Results]** The calculated U_{eff} values of U and Pu atoms are 2.24 eV and 2.84 eV, respectively. The Pu atom is energetically unfavorable to be adsorbed on antimonene (with a negative adsorption energy for each adsorption site), whereas the U and Th atoms exhibit strong chemical adsorption on its surface. Antimonene also offers abundant surficial stable adsorption sites for the U and Th adatoms. The most energetically stable sites for the U and Th adatoms are the B (Bridge)-H (Hollow) site and H (Hollow) site, with adsorption energies of 4.40 eV and 3.62 eV, respectively. The impurity states are generated in the band gap of antimonene in the impurity states contributes to the strong adsorption of the adatoms. The desorption temperatures of U and Th on the surface of antimonene reach 837 K and 660 K, respectively. **[Conclusions]** The results indicate that antimonene is an excellent two-dimensional adsorbent material for U and Th and has potential for several applications such as in the extraction of actinides from seawater.

Key words Antimonene, Actinides, Density functional theory, Linear response, Adsorption, Electronic structure

核能由于其极高的能量密度和无温室气体排放 等优点,被认为是化石能源的最佳替代品之一[1]。 铀(U)是使用最广泛的传统核燃料,主要通过矿产 开采获得。然而长期以来我国被认为是贫铀国,目 前我国已探明的陆地铀矿资源非常有限,寻找新的 铀资源或者替代品是解决我国乃至世界铀资源困境 的必然选择。海水中的铀是陆地上可开采的铀总量 的1000倍,约45亿吨^[2-3],而钍(Th)和钚(Pu)作为 铀的替代品,也同时存在于海水中,因此从海水中提 取^[4]铀、钍、钚可以作为解决铀资源困境的重要方案 之一。然而,较低的浓度(其中铀浓度约3.3×10⁻⁹)以 及复杂的组成使得从海水中高效回收铀、钍、钚非常 具有挑战性^[5],寻找高吸附性能材料是解决这一问 题的关键。得益于极大的比表面积、丰富的活性位 点、高孔隙率、低密度以及易功能化等特性,二维材 料诸如石墨烯及其衍生物[6-7]、二维过渡金属碳化物 或碳氮化物(MXenes)[8-9]、金属有机骨架(Metal Organic Frameworks, MOFs)^[10] 和 黑 磷 (Black Phosphorus, BP)^[11]已开始被研究作为可能的新型吸 附剂提取铀或其他锕系元素。

锑烯是一种与黑磷同属、具有褶皱蜂窝状原子 结构的氮族单质二维金属材料,其最稳定相为菱方 相(rhombohedral or β-Sb)。自曾海波等^[12]首次通过 外延生长法制备出单原子层锑烯以来,锑烯因其独 特的电子和光学性质以及良好的环境稳定性而受到 人们的广泛关注。当锑烯的原子层数从少层减小到 单层时,发生金属到间接带隙半导体(2.28 eV)的转 变^[13];而对于单层锑烯,可通过施加双轴应力^[13-14]或 引入点缺陷^[15]实现间接带隙向直接带隙的转变和带 隙大小的调控。同时,锑烯具有较高的载流子迁移 率(电子和空穴载流子迁移率分别为150和 510 cm²·V⁻¹·s⁻¹)^[16]、优异的光学响应^[17-19]和非线性吸 收特性^[20]、由非磁性吸附原子诱导产生的 sp 电子高 温铁磁性^[21],以及比石墨烯(在300 K时为2000~ 5000 W·m⁻¹·K⁻¹)小得多的晶格热导率(在300 K时 为15.1 W·m⁻¹·K⁻¹)^[22-23]和超常的热电性能^[24],因此在 众多领域有着广阔的应用前景^[25-26]。

进一步的理论研究发现,锑烯非局域的5s和5p 电子轨道形成表面悬挂键或激活键,因此相比于目 前广泛关注的石墨烯,锑烯具有更高的表面亲和力 和轨道杂化能力。计算发现锑烯对非金属(H、B、C、 N、O、F)、碱金属(Li、Na、K)、碱土金属(Be、Mg、Ca) 和3d过渡金属(Sc、Ti、Co、Ni)^[15,27]等原子表现出较 强的化学吸附作用,然而关于锑烯对锕系元素吸附 性能的研究尚未有报道。本文采用线性响应方法对 锕系元素(U、Th、Pu)的哈伯德U值进行拟合,采用 哈伯德U值修正的密度泛函理论(Density Functional Theory,DFT)计算方法(即DFT+U方法) 模拟锑烯对U、Th、Pu原子的吸附行为,揭示其吸附 机理,为锑烯及其他二维材料在海水提铀等领域中 的应用提供理论依据。

1 计算方法

本研究采用基于 DFT 的 VASP 软件包^[28-29]进行 计算,交换关联泛函采用 PBE (Perdew-Burke-Ernzerhof)形式的广义梯度近似 (Generalized Gradient Approximation, GGA)^[30],离子实与电子的 相互作用通过投影缀加平面波 (Projected Augmented Wave, PAW)^[31]赝势来描述,利用 optPBE 方法解释范德华(van der Waals,vdW)相互作用的影 响^[32-33],并使用 Grimme 的零阻尼 DFT-D3 方法进行 范德华校正。计算考虑的铀、钍、钚、锑原子的价电 子排布分别为 6s²6p⁶5f²6d²7s²、6s²6p⁶5f¹6d¹7s²、 6s²6p⁶5f⁴6d²7s²、5s²4d¹⁰5p³(分别包含14、12、16、15个 价电子)。然而,传统的DFT方法低估了锕系元素 5f 电子的强格点库仑斥力(On-site Coulomb Repulsion),导致计算结果与实验结果存在较大偏 差。为了克服传统DFT方法的缺点,发展了DFT+U 方法,采用有效的哈伯德 U值(Hubbard-U or U_{eff})修 正不同f电子的强库仑作用。对于锕系元素,目前 并没有一个普遍接受的U值能够解释所有的实验结 果[34]。因此,针对锑烯吸附锕系元素的特定体系,有 必要对锕系元素的U值重新进行评估。本文采用线 性响应法^[35]对锕系元素的U值进行了估算,如下:

$$U_{\rm eff} \approx \left(\frac{\partial N_I^{\rm SCF}}{\partial V_I}\right)^{-1} - \left(\frac{\partial N_I^{\rm NSCF}}{\partial V_I}\right)^{-1} = \chi^{-1} - \chi_0^{-1} \quad (1)$$

式中: $\partial N_i^{\text{scr}} \pi \partial N_i^{\text{scr}} \partial M_i^{\text{scr}}$ 分别指自洽和非自洽计算时铀 或钍原子的5f轨道电子占据数的变化量, ∂V_i 指外加 的哈伯德U值的扰动变化量。

海水中的铀一般以铀酰离子与碳酸根、氢氧根 等络合的形式、或以单独铀酰离子的形式存在,然 而,作为新型二维材料锑烯表面锕系元素吸附性能 的一个初步理论研究,考虑到铀酰离子及其络合物 模型体系在本研究计算方法中的复杂性,本研究对 铀酰离子模型进行简化,计算了铀、钍、钚原子在锑 烯表面的吸附行为。Wang 等^[8]关于铀原子在 MXene 表面吸附的第一原理计算很好地解释了 MXene 对铀酰离子具有较强吸附能力的实验结 果^[9],在一定程度上证明了该简化模型的可行性。 在周期边界条件下,采用菱方相单层锑烯的5×5×1 超胞(含50个锑原子)作为单个锕系元素原子的吸 附基底,使锑烯单层位于超胞的xy平面,在z方向上 取20Å的真空层模拟单层锑烯表面并避免周期性 边界引起的层与层之间相互作用。图1(a)和(b)展 示了锑烯的原子构型及其表面可能的4个吸附位 点:桥位(Bridge site, B位),即Sb-Sb键中心的正上 方;孔位(Hollow site,H位),即Sb原子六边形中心 正上方;顶位(Top site,T位),即褶皱顶部Sb原子的 正上方;谷位(Valley site,V位),即褶皱底部Sb原子 的正上方。利用共轭梯度法优化原子位置,且结构 弛豫的能量以及力的收敛阈值分别设置为10⁻⁶ eV 和 0.01 eV·Å⁻¹。在 300~600 eV 能量范围内,对结构 弛豫和自洽计算的平面波基组展开的平面波截断能 进行收敛性测试,发现截断能设置为

 $\hbar^{2}|k+G|^{2}/2m = 500 \text{ eV}$ 时能够达到一个满意的收敛性结果,且足够大以消除结构弛豫期间 Pulay Stress 引起的误差影响。采用高斯型费米能级涂抹法,涂抹宽度为0.1 eV。布里渊区^[36]k空间采样点采用 Monkhorst-Pack 方案^[37],网格点设置为3×3×1。尽管自旋极化(或磁性)和自旋轨道耦合效应在铀^[38]、钍^[39]、钚^[40]体系中具有不同的特征,对电子结构的贡献大小不一,本研究考虑到f轨道电子的内禀属性,并为了保持计算方法的一致性和更贴合实际,对所有体系的电子结构计算均同时考虑自旋极化以及自旋轨道耦合效应。

铀、钍、钚原子在锑烯表面的吸附能^[41-43](*E*_{ads})计 算公式如下:

$$E_{\rm ads} = E_{\rm sub} + E_{\rm ad} - E_{\rm ad/sub} \tag{2}$$

式中: E_{aub} 指吸附前基底(锑烯)的能量; E_{ad} 指吸附前 单个孤立吸附原子的能量; $E_{ad/sub}$ 指吸附原子与基底 形成稳定系统的总能。 E_{ads} 值越大,代表所形成的吸 附结构越稳定。根据统计热力学理论,锕系元素在 单层锑烯表面达到吸附平衡时的吸附率 $\theta^{[44]}$ 表 示为:

$$\theta = \frac{1}{1 + \frac{1}{n} \left(\frac{2\pi m K_{\rm b} T}{h^2}\right)^{3/2} {\rm e}^{-\frac{E_{\rm sub}}{K_{\rm b} T}}}$$
(3)

式中:n指体系中锕系元素的密度;m指锕系元素的 相对原子质量; K_b 指玻尔兹曼常数;h指普朗克常 数;T指吸附时的环境温度。根据式(3),吸附率 θ 由 温度T和吸附能 E_{ads} 两个变量决定,其中 E_{ads} 可由式 (2)通过计算得到。

2 结果和讨论

2.1 U值的确定

本文利用线性响应方法[35]对超胞体系中锕系元

素的哈伯德 U值进行了估算,格点库仑项(U)与交换项(J)将合并为一个有效的U参数^[45] (U_{eff} = U - J),以解释锕系元素5f轨道上的交换关联误差。而在所研究的三种锕系元素铀、钍、钚中, 钍元素的5f轨道电子仅有1个,同时衬底锑原子的f 轨道为空轨道,且一般不存在最外层的f轨道跃迁, 因此,单个钍吸附原子的5f电子以及与衬底Sb原子 间一般不会产生f电子之间的强库伦作用^[46],不需 要加U值进行修正。而对于铀和钚元素,则对体系中铀原子和钚原子5f能级上的势进行扰动,并拟合得到线性响应函数。图2(a)和(b)分别显示了铀原子和钚原子的5f能级电子数随扰动势位移V的变化,其中,蓝线和红线分别对应一系列扰动后线性拟合得到的非自洽场(Non-self-consistent Field, NSCF)裸响应函数和自洽场(Self-consistent Field, SCF)响应函数。

图 2 锑烯吸附锕系元素体系中(a)铀原子或(b)钚原子的5f电子数关于扰动势移 *V*的响应函数 Fig.2 Number of 5f electrons of a U (a) or Pu (b) atom as a function of potential shift *V*, in a system of antimonene adsorbed with an actinide atom

根据式(1),图2(a)中铀元素的非自洽响应和自 洽响应计算5f轨道电荷数的拟合直线斜率 χ_0 和 χ 分 别为1.812和0.358,则铀元素吸附于锑烯超胞表面 的有效相互作用参数 U_{eff} 值为 $U_{eff} = \chi^{-1} - \chi_0^{-1} =$ 2.24 eV,这与Lu等^[47]测试的与实验结果吻合较好的 U值($U_{eff} = 2.0 \text{ eV}$)以及其他使用的U值^[38,48]相接 近。图2(b)中钚元素的非自洽响应和自洽响应计 算5f轨道电荷数的拟合直线斜率 χ_0 和 χ 分别为 3.149和0.317,则钚元素吸附于锑烯超胞表面的有 效相互作用参数 U_{eff} 值为2.84 eV。所得的 U_{eff} 值将 用于吸附与电子结构的DFT+U计算。

2.2 吸附特征

为检查吸附构型的稳定性,利用式(2)计算了单 个铀、钍、或钚原子在单层锑烯表面的*E*_{ads}。三种锕 系元素的初始位置设为B、H、T或V位,距离单层锑 烯表面约1.8Å的高度进行优化。结构优化后单个 铀、钍或钚原子在锑烯表面的*E*_{ads}、吸附原子与锑烯 之间的Bader电荷转移量(Δρ)、吸附原子与锑原子 之间的最小键长(*d*_{Asb}),以及吸附高度(*h*,指吸附原 子与锑烯褶皱项部Sb原子层面之间的垂直距离)结 果如表1所示。结果表明:铀、钍原子在锑烯表面不 同位点的*E*_{ads}均为正,表明它们能够稳定吸附于单层 锑烯表面,且均属于较强的化学吸附。对于铀原子 而言,其吸附在单层锑烯表面不同吸附位点的弛豫 结构如图3(a)~(d)所示,其中铀原子吸附在锑烯表 面B位的弛豫后位置向V位偏移,使得其能量上最 稳定吸附位点为B位——V位的连线之间(见图3 (a)),此时*E*_{ads}高达4.40 eV,*d*_{A-Sb}为3.09 Å,吸附高度 h为1.89Å;同时锑烯结构发生了微小形变,靠近铀 原子的Sb-Sb键的键长减小至2.88Å(本研究中初始 锑烯优化后的Sb-Sb键长为2.90Å,与Wang等计算 的锑烯键长2.89 Å基本一致^[49])。铀原子吸附在H 位、T位和V位弛豫后均未发生偏移,吸附能分别为 3.80 eV、3.44 eV和3.64 eV,表明铀原子在这些位点 也能稳定吸附,锑烯能为铀原子提供丰富的表面活 性吸附位点。对于钍原子,其吸附在单层锑烯表面 不同吸附位点的弛豫结构如图3(e)~(h)所示,其中 钍原子吸附在锑烯表面 B 位的弛豫后稳定位置同样 向V位偏移(Easts为3.47 eV),而吸附在H位、T位和 V位的钍原子弛豫后均未发生偏移(Eads分别为 3.62 eV、2.43 eV、和 3.47 eV),表明钍原子在这些位 点也能稳定吸附,锑烯能为钍原子提供丰富的表面 活性吸附位点。与铀原子不同的是,H位吸附的钍 原子最为稳定(见图3(f)),此时 E_{ads} 高达3.62 eV, d_{A-sb}为3.02Å,h为1.50Å;锑烯结构也发生了微小形 变,靠近钍原子的Sb-Sb键的键长增大至3.43Å。然 而,钚原子在单层锑烯表面所有吸附位点的E_{ad}均为 负,因此从能量角度判断钚原子难以在锑烯表面形 成稳定的吸附构型。根据 Bader 电荷分析[50],两种

稳定吸附的锕系元素(铀和钍)都向锑烯基底提供电荷,且电荷转移量较大,均接近或超过1e,表明铀和 钍与基底锑烯的结合作用较强,因此锑烯可作为铀 和钍的潜在吸附载体,用于海水中铀、钍提取等领域。

表1 单个锕系元素原子(铀、钍、或钚)吸附在锑烯表面不同位点的吸附能 E_{ads} (eV)、吸附原子与锑烯之间的电荷转移△ ρ (e)、 吸附原子与锑原子之间的最小键长 d_{axb} (Å)以及吸附高度h(Å)

Table 1Calculated values for an Actinide atom (U, Th, or Pu) adsorbed at different sites of the surface of antimonene: the
adsorption energy $(E_{ads}, in eV)$ the charge transfer between the adatom and antimonene $(\Delta \rho, in e)$, the smallest bond length of
the adatom and Sb atom $(d_{A,sb}, in Å)$, and the adsorption height of the adatoms from antimonene (h, in Å)

	B site				H site				T site				V site			
	$E_{\rm ads}$	$\Delta \rho$	$d_{\text{A-Sb}}$	h	$E_{\rm ads}$	$\Delta \rho$	$d_{\text{A-Sb}}$	h	$E_{\rm ads}$	$\Delta \rho$	$d_{\text{A-Sb}}$	h	$E_{\rm ads}$	$\Delta \rho$	$d_{\text{A-Sb}}$	h
	/ eV	/ e	/ Å	/ Å	/ eV	/ e	/ Å	/ Å	/ eV	/ e	/ Å	/ Å	/ eV	/ e	/ Å	/ Å
U	4.40	-0.88	3.09	1.89	3.80	-1.03	3.06	1.63	3.44	-0.75	3.07	2.21	3.64	-0.92	3.10	1.95
Th	3.47	-0.91	3.03	1.83	3.62	-1.14	3.02	1.50	2.43	-0.55	2.99	2.20	3.47	-0.88	3.02	1.80
Pu	-0.33	—	3.04	0.06	-0.45	—	3.14	1.82	-1.23	—	3.56	2.80	-0.92	—	3.15	2.01

图3 铀原子(a~d)和钍原子(e~f)分别吸附在锑烯表面B位(a, e)、H位(b, f)、T位(c, g)、或V位(d, h)位的吸附构型的俯视图和侧视图

Fig.3 Top and side views of the adsorption structures of a uranium (a~d) or thorium (e~f) atom adsorbed on the surface of antimonene at the B (a, e), H (b, f), T (c, g), or V (d, h) sites

2.3 电子结构分析

为了解释锕系元素在锑烯材料表面的吸附特征,计算了锑烯吸附单个铀或钍原子的电子结构。 铀或钍原子吸附在锑烯表面的总态密度(Total Density of States, TDOS)和元素轨道投影态密度 (Projected Density of States, PDOS)如图4所示。 Zhang等^[13]在2015年报道了单层锑烯是一种带隙为 2.28 eV的间接带隙半导体。然而,从图4(a)中的 TDOS可以看出,铀在锑烯表面的B位稳定吸附后, 锑烯的带隙中出现明显的杂质态并具有约0.4 eV的 展宽。铀原子没有改变体系的半导体性质,费米能 位于杂质能级与导带底之间,但带隙减小至 0.27 eV。对于钍原子吸附在H位的情况,如图4(b) 中的TDOS所示,带隙中的杂质态穿越费米能级,使 吸附体系转变成金属性质。同时从图4(a)中锑和铀 的PDOS可知,在费米能级以下-0.4~0 eV的最高杂 质占据态位置,锑原子的p轨道和铀原子的d轨道都 具有明显的PDOS峰,表明锑烯与铀吸附原子形成 了较强的p-d轨道杂化态^[51],使铀具有较大的 E_{ads} 。 同样,如图4(b)锑和钍的PDOS所示,在费米能级以 下的-0.4~0 eV的最高杂质占据态位置,锑原子的p 轨道和钍原子的d轨道也都具有明显的PDOS峰,因 此也产生了明显的p-d耦合,但其耦合程度略小于 铀原子,这可能是钍原子的 E_{ads} 较铀原子 E_{ads} 小的 原因。

为理解铀和钍原子吸附在锑烯表面的 p-d 耦合 来源,计算了 Gamma 点处最高占据分子轨道 (Highest Occupied Molecular Orbital, HOMO)波函 数等值面图。铀原子吸附在B位时,其HOMO如图 5(a)所示,铀原子周围表现为电子富集区域,使得其 原本"纺锤+圆环"状的 d₂轨道角度分布图变得膨 胀。铀原子的3个最近邻锑原子则表现为电子贫乏

图4 单个铀原子(a)或钍原子(b)吸附在锑烯表面的总态密度以及投影态密度图 Fig.4 TDOS and PDOS of a single U (a) or Th (b) atom adsorbed on antimonene

区,其哑铃状的p轨道角度分布图变为球形,而次近 邻锑原子的p轨道形状保留较完好,因此,可推断费 米能附近的p-d耦合主要来源于铀原子的d轨道与3 个最近邻锑原子的p轨道之间的电荷转移。钍原子 吸附在H位时,其HOMO如图5(b)所示,钍原子处 d₂轨道的形状保留较为完好,但总体表现为电子贫 乏区,同时一个最近邻锑原子(Sb1)处为富电子区 域,其p轨道发生变形,因此,可推断费米能附近的 p-d耦合也主要来自于钍原子的d轨道与最近邻锑 原子的p轨道之间的电荷转移。

Fig.5 Top and side views of wavefunction isosurfaces of HOMO for a U (a) or Th (b) atom adsorbed on antimonene (The yellow and cyan patterns denote the electron-rich and electron-depleted regions, respectively, color online) The isosurface values for (a) and (b) are set by 1.6×10^{-6} e·Å⁻³ and 4.0×10^{-7} e·Å⁻³, respectively

2.4 吸附率

对锕系铀、钍原子在锑烯表面的平衡吸附率(θ) 进行了计算。图6给出了铀、钍原子的θ值随环境温 度(T)的变化。根据海水中锕系元素的浓度(约3.3× 10^{-9 [5]}),取锕系元素的密度*n* = 8.35×10¹⁸ m⁻³。随着 环境温度T升高,铀、钍原子的 θ 值分别在708 K和 612 K开始呈急剧的指数衰减,表明铀、钍原子在此 温度开始发生快速解吸过程。铀、钍原子的θ-T曲 线在急剧衰减段都存在一个拐点,在拐点处吸附速 率方程式(3)对T的二阶导数为零,该拐点所对应的 温度定义为临界温度 T,即锕系元素在单层锑烯表 面发生吸附到解吸的转变温度(即接近于 $\theta = 0.5$ 时 对应的T值)。当 $T \leq T$ 时,锕系元素几乎被锑烯完 全吸附,当T>T。时,大部分锕系元素会从锑烯表面 释放。因此,选择一个合适的温度有助于提高锕系 元素在锑烯表面的吸附率。当锕系元素密度*n*= 8.35×10¹⁸ m⁻³时,铀、钍原子吸附在单层锑烯表面的 临界温度T。分别达到837K和660K,能够满足在海 水提铀等实际场景中对吸附材料 T.值的要求。

图6 铀和钍原子在锑烯表面的吸附率随温度的变化曲线 Fig.6 Variation curves of adsorption rate with temperature for a U or Th atom adsorbed on antimonene

3 结语

通过第一性原理计算研究了锕系元素(铀、钍、 钚)在锑烯单原子层表面的吸附性能。利用线性响 应的方法拟合得到铀、钍原子的有效哈伯德U值分 别为2.24 eV和2.83 eV,并采用DFT+U计算获得了 铀、钍、钚原子在锑烯表面的最佳吸附位点与吸附 能,结果表明:单层锑烯难以实现钚原子的稳定吸 附,而对铀、钍原子具有较强的化学吸附效果。锑烯 能为铀和钍原子提供丰富的表面活性吸附位点,这 些位点的吸附能位于2.43 eV和4.40 eV之间,其中 铀原子在桥位——孔位之间最稳定,而钍原子在孔 位最稳定,两者的吸附能分别为4.40 eV和3.62 eV。 对吸附系统的电子结构进行了Bader电荷、DOS以及轨道波函数分析,发现铀、钍原子的d轨道与最近邻锑原子之间发生电荷转移,形成较强的p-d耦合,使得单层锑烯对铀、钍原子具有稳定吸附。通过吸附速率方程得出铀、钍原子在单层锑烯表面的吸附-解吸转变温度分别为837 K和660 K。本研究揭示了锑烯表面锕系元素的吸附特征,为开辟锑烯及其他二维材料在锕系元素分离提取(如海水提铀)等领域中的应用提供了理论基础。

作者贡献声明 吴飞宏负责计算操作和数据处理分 析、论文初稿撰写和修改;汤贤负责论文构思、研究 方案指导、研究经费获取、数据分析、论文撰写和修 改;成国栋负责计算方法指导、数据处理分析和论文 撰写;闫隆负责数据分析;张洋负责计算方法的验证 分析。

参考文献

- Hoffert M I, Caldeira K, Benford G, *et al.* Advanced technology paths to global climate stability: energy for a greenhouse planet[J]. Science, 2002, **298**(5595): 981 – 987. DOI: 10.1126/science.1072357.
- 2 Endrizzi F, Rao L F. Chemical speciation of uranium(VI) in marine environments: complexation of calcium and magnesium ions with [(UO₂)(CO₃)₃]⁴⁻ and the effect on the extraction of uranium from seawater[J]. Chemistry A European Journal, 2014, **20**(44): 14499 14506. DOI: 10. 1002/chem.201403262.
- 3 Sugasaka K, Katoh S, Takai N, et al. Recovery of uranium from seawater[J]. Separation Science and Technology, 1981, 16(9): 971 - 985. DOI: 10.1080/ 01496398108057594.
- Sholl D S, Lively R P. Seven chemical separations to change the world[J]. Nature, 2016, 532(7600): 435 437. DOI: 10.1038/532435a.
- 5 Liu C, Hsu P C, Xie J, *et al.* A half-wave rectified alternating current electrochemical method for uranium extraction from seawater[J]. Nature Energy, 2017, 2: 17007. DOI: 10.1038/nenergy.2017.7.
- Li Z J, Chen F, Yuan L Y, *et al.* Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions[J]. Chemical Engineering Journal, 2012, 210: 539 - 546. DOI: 10.1016/j.cej.2012.09.030.
- Sun Y B, Yang S B, Chen Y E, et al. Adsorption and desorption of U(VI) on functionalized graphene oxides: a combined experimental and theoretical study[J]. Environmental Science & Technology, 2015, 49(7):

4255 - 4262. DOI: 10.1021/es505590j.

- 8 Wang Y H, Xue J M, Nie G, *et al.* Uranium adsorption on two-dimensional irradiation resistant MXenes from firstprinciples calculations[J]. Chemical Physics Letters, 2020, **750**: 137444. DOI: 10.1016/j.cplett.2020.137444.
- 9 Wang L, Yuan L Y, Chen K, et al. Loading actinides in multilayered structures for nuclear waste treatment: the first case study of uranium capture with vanadium carbide MXene[J]. ACS Applied Materials & Interfaces, 2016, 8 (25): 16396 - 16403. DOI: 10.1021/acsami.6b02989.
- 10 Chen M W, Liu T, Zhang X B, et al. Photoinduced enhancement of uranium extraction from seawater by MOF/black phosphorus quantum dots heterojunction anchored on cellulose nanofiber aerogel[J]. Advanced Functional Materials, 2021, **31**(22): 2100106. DOI: 10. 1002/adfm.202100106.
- 11 Yuan Y H, Niu B Y, Yu Q H, *et al.* Photoinduced multiple effects to enhance uranium extraction from natural seawater by black phosphorus nanosheets[J]. Angewandte Chemie International Edition, 2020, **59**(3): 1220 - 1227. DOI: 10.1002/anie.201913644.
- 12 Ji J P, Song X F, Liu J Z, et al. Two-dimensional antimonene single crystals grown by van der Waals epitaxy[J]. Nature Communications, 2016, 7: 13352. DOI: 10.1038/ncomms13352.
- Zhang S L, Yan Z, Li Y F, *et al.* Atomically thin arsenene and antimonene: semimetal-semiconductor and indirectdirect band-gap transitions[J]. Angewandte Chemie International Edition, 2015, 54(10): 3112 - 3115. DOI: 10.1002/anie.201411246.
- Zhao M W, Zhang X M, Li L Y. Strain-driven band inversion and topological aspects in Antimonene[J]. Scientific Reports, 2015, 5: 16108. DOI: 10.1038/ srep16108.
- 15 Bafekry A, Ghergherehchi M, Farjami Shayesteh S. Tuning the electronic and magnetic properties of antimonene nanosheets *via* point defects and external fields: first-principles calculations[J]. Physical Chemistry Chemical Physics, 2019, **21**(20): 10552 - 10566. DOI: 10.1039/c9cp01378d.
- 16 Wang Y Y, Huang P, Ye M, *et al.* Many-body effect, carrier mobility, and device performance of hexagonal arsenene and antimonene[J]. Chemistry of Materials, 2017, **29**(5): 2191 – 2201. DOI: 10.1021/acs.chemmater.6 b04909.
- 17 Zhang G J, Tang X, Fu X, et al. 2D group-VA fluorinated

antimonene: synthesis and saturable absorption[J]. Nanoscale, 2019, **11**(4): 1762 - 1769. DOI: 10.1039/ C8NR07894G.

- 18 Xu Y F, Peng B, Zhang H, *et al.* First-principle calculations of optical properties of monolayer arsenene and antimonene allotropes[J]. Annalen Der Physik, 2017, 529(4): 1600152. DOI: 10.1002/andp.201600152.
- 19 Wang G Z, Higgins S, Wang K P, et al. Intensitydependent nonlinear refraction of antimonene dispersions in the visible and near-infrared region[J]. Applied Optics, 2018, 57(22): E147 - E153. DOI: 10.1364/AO.57.00E147.
- Zhang F, Wang M X, Wang Z P, *et al.* Excellent nonlinear absorption properties of β -antimonene nanosheets[J]. Journal of Materials Chemistry C, 2018, 6(11): 2848 2853. DOI: 10.1039/C8TC00306H.
- 21 Tang X A, Hu L A, Fan T W, *et al.* Robust above-room-temperature ferromagnetism in few-layer antimonene triggered by nonmagnetic adatoms[J]. Advanced Functional Materials, 2019, 29(15): 1808746. DOI: 10.1002/adfm.201808746.
- 22 Wang S D, Wang W H, Zhao G J. Thermal transport properties of antimonene: an *ab initio* study[J]. Physical Chemistry Chemical Physics, 2016, 18(45): 31217 -31222. DOI: 10.1039/C6CP06088A.
- 23 崔洋,李寿航,应韬,等.基于第一性原理的金属导热性能研究[J].金属学报,2021,57(3):375-384. DOI: 10.11900/0412.1961.2020.00250.
 CUI Yang, LI Shouhang, YING Tao, *et al.* Research on the thermal conductivity of metals based on first principles [J]. Acta Metallurgica Sinica, 2021, 57(3): 375 384. DOI: 10.11900/0412.1961.2020.00250.
- 24 Chen K X, Lyu S S, Wang X M, et al. Excellent thermoelectric performance predicted in two-dimensional buckled antimonene: a first-principles study[J]. The Journal of Physical Chemistry C, 2017, **121**(24): 13035 – 13042. DOI: 10.1021/acs.jpcc.7b03129.
- Wang X, Yu X T, Song J, et al. Two-dimensional semiconducting antimonene in nanophotonic applications A review[J]. Chemical Engineering Journal, 2021, 406: 126876. DOI: 10.1016/j.cej.2020.126876.
- Wang X, Song J, Qu J L. Antimonene: from experimental preparation to practical application[J]. Angewandte Chemie International Edition, 2019, 58(6): 1574 1584. DOI: 10.1002/anie.201808302.
- 27 Üzengi Aktürk O, Aktürk E, Ciraci S. Effects of adatoms and physisorbed molecules on the physical properties of

antimonene[J]. Physical Review B, 2016, **93**(3): 035450. DOI: 10.1103/physrevb.93.035450.

- 28 Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Computational Materials Science, 1996, 6(1): 15 - 50. DOI: 10.1016/0927-0256(96) 00008-0.
- Kresse G, Furthmüller J. Efficient iterative schemes forab *initio*total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169 11186. DOI: 10.1103/physrevb.54.11169.
- Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865 3868. DOI: 10.1103/physrevlett.77. 3865.
- Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758 - 1775. DOI: 10.1103/ physrevb.59.1758.
- 32 Klimeš J, Bowler D R, Michaelides A. Chemical accuracy for the van der Waals density functional[J]. Journal of Physics: Condensed Matter, 2010, 22(2): 022201. DOI: 10.1088/0953-8984/22/2/022201.
- Klimeš J, Bowler D R, Michaelides A. Van der Waals density functionals applied to solids[J]. Physical Review B, 2011, 83(19): 195131. DOI: 10.1103/physrevb. 83. 195131.
- Shi H L, Zhang P, Li S S, *et al.* Electronic structures and mechanical properties of uranium monocarbide from first-principles and calculations[J]. Physics Letters A, 2009, 373(39): 3577 3581. DOI: 10.1016/j. physleta. 2009. 07.074.
- 35 Cococcioni M, de Gironcoli S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method[J]. Physical Review B, 2005, 71(3): 035105. DOI: 10.1103/physrevb.71.035105.
- 36 Ramíarez R, Böhm M C. Simple geometric generation of special points in brillouin-zone integrations. Twodimensional bravais lattices[J]. International Journal of Quantum Chemistry, 1986, **30**(3): 391 – 411. DOI: 10. 1002/qua.560300306.
- 37 Chadi D J. Special points for brillouin-zone integrations
 [J]. Physical Review B, 1977, 16(4): 1746 1747. DOI: 10.1103/physrevb.16.1746.
- 38 Kocevski V, Rehn D A, Cooper M W D, et al. Firstprinciples investigation of uranium mononitride (UN):

effect of magnetic ordering, spin-orbit interactions and exchange correlation functional[J]. Journal of Nuclear Materials, 2022, **559**: 153401. DOI: 10.1016/j. jnucmat. 2021.153401.

- 39 Nakamura H, Machida M. First-principles calculation study on phonon thermal conductivity of thorium and plutonium dioxides: intrinsic anharmonic phonon-phonon and extrinsic grain-boundary - phonon scattering effects [J]. Journal of Nuclear Materials, 2019, **519**: 45 - 51. DOI: 10.1016/j.jnucmat.2019.03.033.
- 40 Söderlind P, Landa A, Sadigh B. Density-functional theory for plutonium[J]. Advances in Physics, 2019, 68 (1): 1 47. DOI: 10.1080/00018732.2019.1599554.
- 41 张洁茹,杨波,潘海映,等.高放废物包装容器铁基材料的CI吸附腐蚀微观机理研究[J].核技术,2021,44(10):100301.DOI:10.11889/j.0253-3219.2021.hjs.44.100301.ZHANG Jieru, YANG Bo, PAN Haiying, *et al.* Corrosion mechanism of iron-based materials adsorption Cl in high level radioactive waste packaging containers[J]. Nuclear Techniques, 2021, 44(10): 100301.DOI: 10.11889/j.0253-3219.2021.hjs.44.100301.
- 42 董兰,蒋树斌,成琼,等.W及W-Mo团簇吸附H2分子的 密度泛函研究[J].核技术,2011,34(10):796-800.
 DONG Lan, JANG Shubin, CHENG Qiong, *et al.* Hydrogen molecule adsorption of W and W-Mo clusters studied by density functional theory[J]. Nuclear Techniques, 2011, 34(10): 796 - 800.
- 43 耿继国, 王宽. 碳掺杂氮化硼纳米管吸附气体小分子的 DFT 计算[J]. 核技术, 2016, 39(5): 050501. DOI: 10.
 11889/j.0253-3219.2016.hjs.39.050501.
 GENG Jiguo, WANG Kuan. DFT calculations on the

adsorption of small gas molecules onto C-doped boron nitride nanotubes[J]. Nuclear Techniques, 2016, **39**(5): 050501. DOI: 10.11889/j.0253-3219.2016.hjs.39.050501.

- 44 Luo X F, Fang C, Li X, *et al.* Study of interaction between radioactive nuclides and graphite surface by the first-principles and statistic physics[J]. Applied Surface Science, 2013, **285**: 278 - 286. DOI: 10.1016/j. apsusc. 2013.08.050.
- 45 Dudarev S L, Botton G A, Savrasov S Y, *et al.* Electronenergy-loss spectra and the structural stability of nickel oxide: An LSDA+U study[J]. Physical Review B, 1998, 57(3): 1505 - 1509. DOI: 10.1103/physrevb.57.1505.
- Wang L, Maxisch T, Ceder G. Oxidation energies of transition metal oxides within the GGA+U framework[J].
 Physical Review B, 2006, 73(19): 195107. DOI: 10.1103/

physrevb.73.195107.

- 47 Lu Y, Wang B T, Li R W, *et al.* Structural, electronic, and thermodynamic properties of UN: systematic density functional calculations[J]. Journal of Nuclear Materials, 2010, 406(2): 218 222. DOI: 10.1016/j.jnucmat.2010. 08.026.
- 48 Söderlind P, Kotliar G, Haule K, *et al.* Computational modeling of actinide materials and complexes[J]. MRS Bulletin, 2010, **35**(11): 883 - 888. DOI: 10.1557/ mrs2010.715.
- 49 Wang G X, Pandey R, Karna S P. Atomically thin group V elemental films: theoretical investigations of antimonene

allotropes[J]. ACS Applied Materials & Interfaces, 2015, 7 (21): 11490 - 11496. DOI: 10.1021/acsami.5b02441.

- 50 Henkelman G, Arnaldsson A, Jónsson H. A fast and robust algorithm for Bader decomposition of charge density[J]. Computational Materials Science, 2006, 36(3): 354 - 360. DOI: 10.1016/j.commatsci.2005.04.010.
- 51 Li H X, Zhang W B, Zhou G H. Giant interlayer magnetic exchange interaction and charge-spin coupling in a van der Waals magnetic interface driven by p-d coupling[J]. Physical Review B, 2022, 105(7): 075405. DOI: 10.1103/ physrevb.105.075405.